

iProbe

Instantaneous flow measurement with a multi-hole probe has never been easier and faster.

Digital multi-hole probe, with onboard data processing and direct output of engineering units: a plug & play flow measurement device

Slim design compatible with 3- and 5-hole probe heads

Robust design with stainless steel housing and Lemo connector

Data acquisition and power via USB

General		
Weight probe shaft	190 g	
Weight probe head	Typical head 60 g	
Dimensions probe shaft	Ø20 mm x 255 mm (5-hole probe version)	
Dimension probe head	Typical head 100 mm x 20 mm	
Probe options	3- and 5-hole probe heads	
Temperature measurement	Pt100	

Environmental Conditions	
Operating temperature	-20 70 °C (-4 158 °F)
Operating medium	Air and other non-corrosive gases
Humidity	0 95 %, non-condensing

General

The iProbe is a compact plug & play solution for flow and pressure measurements. The setup can be used with any laptop, in field or laboratory environment. Optionally, the setup can be purchased along with VectoVis Pro, which allows you to monitor and record engineering data in real time.

Figure 1: iProbe

Probe head options

The iProbe, is configurable in different multi-hole probe configurations. This includes 2D probes such as 3-hole probes, as well as 3D probes such as 5-hole probes. The pressure distribution on the probe tip will be correlated to individual wind tunnel calibrations to determine static pressure, total pressure, and the velocity components/flow angles.

The probe can be equipped with freely customized probe shapes, due to the design freedom in additive manufacturing. Shape and size can hence be adapted to any installation or access to flow path situation.

Figure 2: Shape examples (top to bottom: cobra probe, straight probe, L-shaped probe)

The iProbe is also available with optical tracker and compatible with Streamwise ProCap System.

(https://www.streamwise.ch/procap/)

Page - 1 - of 3 Version: 2023-05-09

Pressure Acquisition		
Pressure acquisition	up to 5 differential pressure sensors with variable pressure ranges	
Pressure sensor accuracy	Max. +/- 0.25 % full scale (typical +/- 0.1 %)	
Absolute pressure acquisition	Barometric pressure sensor	

Sensor Options		
Differential pressure range (kPa)	Max. velocity (m/s) *	
0.25	20.0	
0.50	28.5	
1.00	40.5	
2.50	63.5	
5.00	89.5	
10.00	125.5	

^{*}Standard atmosphere

Measurement Errors	
Flow angles	< 1°
Velocities	< 1.0 m/s or < 1.0 %, whichever is greater
Temperature	< 1 K

Interfaces		
Communication	USB for communication with host PC (setup and data acquisition)	
Power	5 V via USB	
Pressure reference port	Metal tube for reference pressure Ø 1,06 mm	
Cable (included)	1.8m Lemo cable (FGG.0B.307) to USB	
Sampling rate	up to 50 Hz	

Probe Configuration		
Geometry	Straight, L-shaped, Cobra	
Number of holes	3 and 5	
Max. probe head length	Up to 280 mm (one part) >280 mm (multipart designs)	
tip diameter	Typ. 3 mm 5 mm	
Tip geometry	Conical, spherical	
Material	Stainless steel, Titanium, Inconel	
Fastening	Hexagonal, one-sided flattened cylinder	
Reference	Reference surface normal to Z axis	
Temperature range	-20 70 °C	

Sensors and Electronics

The iProbe is equipped with up to 5 differential pressure sensors for the probe tip, and one barometric pressure sensor which is used as a reference pressure for the differential pressure sensors. All differential pressure sensors can be selected by pressure range. The temperature-compensated pressure transducers feature high accuracy and a minimal offset drift. The high proof pressure provides sufficient protection against accidental overloads.

PC Communication

The data can be transmitted via USB. The transmission rate can be set up to 50 Hz. A 5V power supply can be provided simply via USB.

When connected via USB the pressure scanner identifies itself to the host PC as a virtual COM port. Thus, any software supporting serial protocols can be used for communication.

The data acquisition can be done with VectoVis, where e.g., a live view of all data and data recording function in readable file formats such as .csv is available.

Page - 2 - of 3 Version: 2023-05-09

Outputs

The following output values are available:

Outputs **	
Name	Unit
P ₁ P ₅ (differential pressure)	Pa]
P _{abs} (absolute pressure)	Pa
Ttc (temperature of RTD)	°C
Theta (cone angle)	0
Phi (roll angle)	0
Alpha (angle of attack)	0
Beta (yaw angle)	0
V _{mag} (velocity magnitude)	m/s
u (x-component of velocity)	m/s
v (y-component of velocity)	m/s
w (z-component of velocity)	m/s
P _d (dynamic pressure)	Pa
P _s (static pressure)	Pa
ρ (air density)	kg/m³
T _{tot} (total temperature)	°C
T _s (static temperature)	°C
M (Mach number)	-
Alt (baro altitude)	m
AltAbs (absolute altitude)	m
Num (counter)	-
Error	-

^{**} Details see Manual

Contact

Vectoflow GmbH, Germany

T: +49 89 124149570

M: info@vectoflow.com

w: www.vectoflow.com

Page - 3 - of 3 Version: 2023-05-09