

DATA SHEET Windflower

PRODUCT NAME

Windflower

TYPE

Five-hole pitot tube probe + Eagle ADC

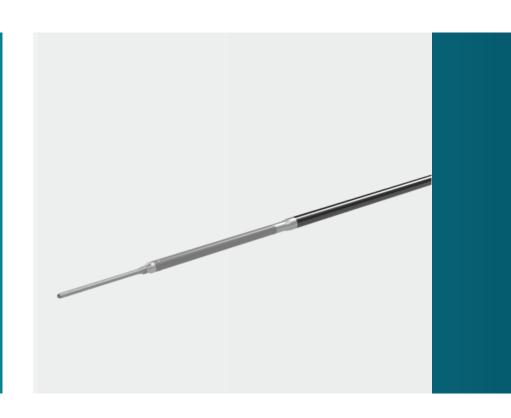


Fig. 1 Windflower with integrated ADC system

Fig. 2 Windflower mounting interface

DESCRIPTION

The Windflower measurement system was designed for autonomous operation while mounted at the nose cone of a wind turbine. The system consists of a probe and a connected data acquisition device, which is called Eagle ADC. Its ability to continuously operate under severe weather conditions has been validated during a test campaign lasting 80+ days. Of these days, 64 had rain and 35 had a minimum temperature below 0°C. The onboard heater of the system successfully prevents both, condensation, and icing during operation conditions.

The system showed no damage or wear after disassembly at the end of the campaign and could have been operated for another couple of months without maintenance, validating the high degree of autonomy achieved by the system.

GENERAL

Weight	~3 kg
Dimension probe	5-hole probe Head: 160 mm x Ø 9 mm, Boom: 1,580 mm x Ø 25 mm Mount: 260 mm Total length: 2,000 mm
Materials	Head: Stainless steel Boom: CFRP Mount: PLA, Stainless steel Eagle ADC casing: Die-cast aluminum

ENVIRONMENTAL CONDITIONS

Operating temperature	-20 50°C (-4 158°F)
Operating medium	Air
Humidity	0 95 %
Velocity	5 25 m/s

PRESSURE ACQUISITION

Pressure acquisition	5 differential pressure sensors
Pressure sensor accuracy	Max. +/- 0.25 % FSS (typical +/- 0.1 % FSS)

TEMPERATURE CONTROL

Measurement	Thermocouple or Pt100
Heater	24 V @ 2 A (= 48 W)

MEASUREMENT ERRORS

Flow angles ¹	< 1°
Velocities	< 1.0 m/s or < 1.0 %, whichever is greater
Temperature	< 1 K

¹ Verified during a test campaign at TU Berlin

INTERFACES

USB or CAN	Communication with Host PC for configuration (USB) and data acquisition (USB or CAN)
Power	5 V via USB or 24 V via CAN
Pressure connection	Metal tube Ø 1.06 mm
Cable (included)	1.8 m LEMO (FGG.0B.307 to USB A)
Cable (optional)	1.8 m LEMO (FGG.0B.307 to D-SUB 9 for CAN)
Max. data transmission rate	16 Hz

OUTPUTS

Name	Unit
P ₁ P ₅ (differential pressure)	Pa
P _{abs} (absolute pressure)	Pa
T _{tc} (temperature of RTD)	° C
Theta (cone angle)	0
Phi (roll angle)	0
Alpha (angle of attack)	0
Beta (yaw angle)	0
V _{mag} (velocity magnitude)	m/s
u, v, w (velocity components)	m/s
P _d (dynamic pressure)	Pa

OUTPUTS

Name	Unit
P _s (static pressure)	Pa
ρ (air density)	kg/m3
T _{tot} (total temperature)	°C
T _s (static temperature)	°C
M (Mach number)	-
Yaw, Pitch, Roll (according to IMU)	0
Gyroscope (X, Y, Z)	rad/s
Accelerometer (X, Y, Z)	m/s ²
Magnetometer (X, Y, Z)	Gauss
Av_Theta (cone angle averaged over one turbine rotation)	0
Av_Phi (roll angle averaged over one turbine rotation)	o
Av_Alpha (angle of attack averaged over one turbine rotation)	0
Av_Beta (yaw angle averaged over one turbine rotation)	o
Av_U, Av_V, Av_W (averaged velocity components over one turbine rotation)	m/s

VALIDATION CAMPAIGN

During a validation campaign at Danish Technical University (DTU) Windflower data was compared to data from a measurement mast installation at 118 m upstream of a test turbine and to data from a sonic anemometer placed on the nacelle of the test turbine in the downwash of the blades. Results of this comparison, as visualized in Figures 4 and 5, show the excellent performance of the Windflower system by means of accuracy and signal noise. Figure 3 moreover shows a picture of the probe mounted on the nose of the test turbine.

Fig. 3 Test turbine at DTU with Windflower system installed on the nose cone

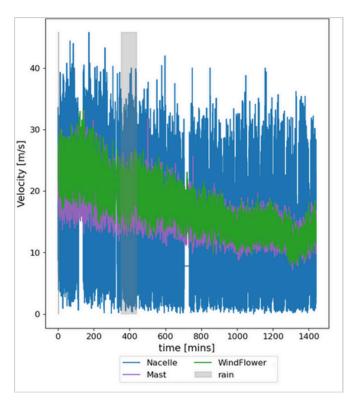


Fig. 4 Velocity plot of a typical day during validation campaign at DTU. The grey area indicates rain detection.

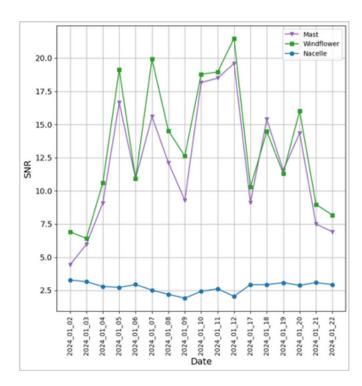


Fig. 5 Averaged Signal to Noise ratio (SNR) per day for the signals from Windflower (green squares), the sonic anemometer upstream of the turbine (purple triangles) and the sonic anemometer on the nacelle (blue circles). The SNR was calculated for a data length of 3 seconds and averaged per day. Higher SNR implies less noisy signals.